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Department of Mathematical Sciences, University of Petroleum and Minerals, Dhahran, 
Saudi Arabia 

Received 10 November 1982 

Abstract. By using the hodograph method, we find almost all the solutions of the classical 
shallow water equations. We also construct an auto-Backlund transformation (superposi- 
tion principle) on the set of these hodograph solutions and show that this transformation 
is canonical relative to a symplectic form introduced by Manin. 

In their paper, Cavalcante and McKean (1982) wish to know an explicit solution to 
the following classical shallow water equations on a horizontal bottom: 

U,+uu,+h, = o ,  h, + hu, + uh, = 0 ,  ( l a ,  b )  

where --CO < x < m is the horizontal coordinate, t is the time, U = U ( t ,  x )  is the horizontal 
component of the velocity at the point x at time t, and h = h( t ,  x )  > 0 is the height of 
the free surface above the point x at time t. In our paper (Akyildiz 1982), besides 
other things, we have constructed explicit solutions to this system of equations. It 
was interesting to see that these solutions and the conservation laws of this system 
could be systematically obtained from a single wave equation. In this article, after 
outlining the construction of these solutions, we shall show that the solution space of 
the wave equation (from which we obtain solutions and conservation laws for the 
system (1)) is isotropic relative to a symplectic form introduced by Manin (1978), 
hence simultaneously proving that the conserved quantities are in involution (which 
was known to Manin) and that the accompanying Backlund transformation is sym- 
plectic. It is an important question whether the isotropic space of the solutions of the 
above-mentioned wave equation is Lagrangian. This is the problem of complete 
integrability of ( l ) ,  which is an infinite-dimensional Hamiltonian system. See $ 5  7 
and 9 in Cavalcante and McKean (1982) on this important matter. 

The system (1) is a pair of quasi-linear partial differential equations with no explicit 
( t ,  x )  dependence. Hence, for any region where the Jacobian j = uxhr - u,h, is non-zero, 
(1) can be transformed into an equivalent linear system by interchanging the roles of 
dependent and independent variables, ( U ,  h )  and ( t ,  x ) ,  respectively. This is a so-called 
hodograph transformation. Since (1) is homogeneous, from U ,  = j t h ,  ut = - j x h ,  h, = -itu, 
h, = j x u ,  we see that the highly nonlinear factor j cancels through in (l),  and we arrive 
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at the following linear differential equations: 

where V is the gradient operator ( a / & ,  a /ah)  on the (U, h )  plane. By eliminating x 
in (2) we obtain the linear equation 

tu ,  = 2 t h  + h t h h ,  

whose solutions can easily be found in standard tables. 
Since the application of the hodograph transformation depends on the assumption 

that j # 0, solutions for which j = 0 cannot be obtained by this method. Such solutions 
are called simple waves, and they form a set of measure zero in the set of all solutions 
of the system (1). Simple waves are important tools for the solution of flow problems; 
for instance, wave breaking occurs when j = 0 due to the multivaluedness, i.e. shocks. 
As an example, the solution 

U = 2x/3t, h = (x/3tI2, 

which is found in Nutku (1981) by a scale-invariance argument, represents a simple 
wave. So, we could not possibly obtain it by the hodograph method. 

The system of equations (2) can also be written in the equivalent form 

(X - u t ) ,  = - ( h t ) h ,  (x - U f ) h  = - tu .  ( 3 4  6) 

These, in return, suggest the existence of potentials "(U, h )  and @(U, h )  satisfying 

",, = -ht, " h  = x - u f ,  

= x  -ut ,  @h = -t. 

Solving (4) for x and t we obtain 

X = " h  - ( U / h ) " , ,  t = -(1/h)'Pu, 
x = @ u - U @ h ,  t = -@h. 

Combining ( 5 2 )  with (36) gives the following wave equation 

vUu = h y h h .  

Similarly, ( 5 6 )  together with (3a) gives 

@U, = ( h @ h ) h *  

Thus, the potentials and @ satisfy linear equations whose solutions can be obtained 
by standard methods. From any one of these potentials, via ( 5 ) ,  we can easily construct 
hodograph solutions of our original system (1). For example, let us construct some 
polynomial solutions to (6 )  in the form 

n 

"= c p , ( u M ' ,  
I =o 

and then find the corresponding solutions of (1). We must satisfy the relations 

p: :  = o ,  ek-1 = m ( m  - l)p,,,(u), m = l , 2  , . . . ,  n. 
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Below we list the first few of these polynomials and solutions. 

\Ir X I U h 

U * I t  111 u l h  l / h  
h 1 0 
uh 0 1 

j u  h + u h 2  

- - 
- - 

$ ( u 2 h  + h 2 )  h - u 2 / 2  - U  -I  X + t 2 / 2  
$ u 3 - u h  u 2 + h  Implicit 

solution 

1 3  

In Akyildiz (1982), we have constructed conserved quantities, \z' dx where \z' is 
a solution of (6),  for the system (1)t. Thus, the solution space of (6) serves as a moduli 
space for the hodograph solutions and also for the conservation laws of the system 
(1). By using this correspondence and the linear nature of (6) we can construct an 
auto-Backlund transformation on the hodograph solutions. This is, of course, nothing 
but a superposition principle for the nonlinear system (1): given two solutions of (l), 
add the corresponding solutions of (6), and then construct the solution of (1) corres- 
ponding to this sum. 

In 1978, Manin introduced the following Hamiltonian formalism for the system (1): 

O D  
J = - [  ] H = i ( u 2 h + h 2 ) ,  

f D 0 '  
[,U] =JVH, 

where J is the Hamiltonian operator, H the Hamiltonian, V the gradient operator in 
(U, h)-space, and D the differentiation with respect to x .  The associated Poisson bracket 
is defined to be 

X 

[A, B] = 1 VAJVB dx 
-m 

for two functions A and B of the variables U and h. 
Finally, we show that this Poisson bracket vanishes on the solution space of the 

wave equation (6),  which parametrises both the hodograph solutions and conservation 
laws of the system (1). Let A and B be two solutions of (6). The integrand in (8) is 

(A,DBh +AhDB,) dx = A ,  dBh +Ah dB,. 

Since 

d(A, dBh +Ah dB,) 

= dA, A dBh + dAh A dB, 

= (Auu du +A,, dh)  A ( B h u  dU +Bhh dh)  

+(Ahu du +Ahh dh)A(B,, du +Buh dh)  

= (AuuBhh du dh 

= (hAhhBhh -AhhhBhh) du A dh 

= 0, 

by (6) 

:The transformation equation between this article and Akyildiz (1982) is h = c2 .  
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the integrand in (8) is closed and is, therefore, exact on simply connected regions; 
that is, 

03 

[ A , B ] = l  dC=O,  
-m 

for a function C of U and h. (We assume that U and h vanish at spatial infinities.) 
Thus, we have simultaneously proved that the auto-Backlund transformation above 
is symplectic and that conserved quantities constructed in Akyildiz (1982) are in 
involution. 
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